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A disorder function has been developed for 
triple-layer structures containing stacking faults. The 
mathematical model includes the effect of the finite 
size of crystallites. The application of the method to 
the elucidation of the structure of 6-TiC13 is discus- 
sed. 

Introduction 

Several examples of triple-layer structures set up 
by a metal layer between two chlorine layers are 
known (Klemm and Krose, 1947). At least in one 
case, that is TiCla, (Guidetti et al., in preparation) 
three polymorphic forms, labelled o, y and 6 are 
described. They are characterized by different mutual 
positions of the triple layers, within which the tita- 
nium atoms are placed in two thirds of the inter- 
stitial octahedral sites. 

In a-TiCls the layer succession along the direc- 
tion of the: axis leads to a hexagonal close packing 
of chlorine atoms (G. Natta et al., 1961). Conversely, 
in -y-Tic& the mutual position of the triple layer 
leads to a cubic close packing of chlorine atoms 
(G. Natta et al., 1961). 

The term 6.TiCla indicates the activated forms of 
o- and y_TiCla (G. Natta et al., 1961, G. Allegra, 
1962); the activation consists of vigorous and pro- 
longed grinding. 

The X-ray diffraction pattern of crystalline 
powder of 6-TiCla, obtained by grinding y-TiCls 
for 24 hr exhibits considerable structural modifica- 
tions with respect to 7-TiCls. The peaks of y-TiCla 
at 20 = 15.28” and 28 = 51.64” (G. Natta et al., 
1959), though less sharp, are still evident. However, 
in the angular range 28-38’, all the peaks of r_TiCls 
disappear and are replaced by an asymmetric halo. 

Allegra formulated at hypothesis about the crys- 
talline structure of 6-TiCls (G. Allegra, 1962) which 
can be summarized as follows: 

CAB) (BC) 

(CA) 

Fig. 1. Partial view (four reduced cells) of the three types of 
layers which give rise to the close packing of chlorine atoms. 

a) the rather sharp peaks of the diffraction pat- 
tern of 6-TiCla are related to the close packing of the 
chlorine atoms within the structural layers, which 
is unaffected by the disorder produced by the 
grinding; 

b) in order to reproduce the angular position of 
the maximum of the halo which lies at 28 = 33.8”, 
intermediate between the sharp peaks at 20 = 32.97’ 
(R. Zannetti, 1967), characteristic of the hexagonal 
close packing in o-TiCls, and 20 = 35.77’ (G. Natta 
et al., 1959), peculiar to cubic close packing of 
y-TiCla, Allegra proposed a mixed cubic-hexagonal 
structure, in which stacking faults occur in the succes- 
sion of the structural layers. For this purpose the 
approximation of ‘infinite crystal’ was sufficient. 

However, our purpose of reproducing the 
complete X-ray diffraction pattern of 6-TiCls 
powder, does not allow us to neglect the finite size 
of crystallites. 
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Mathematical Model 

In the present work we will use the reduced cell, 
space group PTml, adopted by Allegra (1962) By 
translation of the reduced cell along the2 and& axes 
with respect to a fixed space origin (G Allegra, 
1962), only three different types of structural layers 
can be obtained (I e (AB), (BC) and (CA), differing 
only 111 the posItion relative to the common ongm) 
whose succession gives rise to a close packing of 
chlorine atoms (Fig 1) 

A layout of the structure factors of the three 
types of cell 1s straightforward 

F F ABE 1 

F,o = FAB exp [-27n(i h t t k)] E 

FA$Xp(-%Tl@) = Fz 

FoA z FAB exp[2mf(i h t t k)] z 

(1) 

FA#Xp(hl@) = F3 

It 1s possible to build up the matrix P(l) whose 
element Pg’ (r, s = 1,2,3) represents the probability 
that the layer one forward step ahead of an r-type 
layer 1s an s-type layer The successions (AB)-(BC), 
(BC)-(CA) and (CAHAB) are forbidden, because 
they do not gve rise to close packmg, so that the 
matrix P(l) is 

n 0 (1 - w 
p(l) = (1 -II) n 0 (2) 

0 (1 -II) n 

The element Pg’ of the matrix I’@) = P(‘)*P(‘) 
represents the probability that the layer two forward 
steps ahead of an r-type layer IS an s-type layer 

Analogously it IS possible to define PO) 6 = 
132, m) Finally, let us define P(O) 

1 0 0 
p(O) = 

I I 
0 1 0 (3) 
0 0 1 

It follows Immediately 

ply) = p$y) = p$y) 

ply) = p@ = p$nl” 

ply) = p$‘11, = ply) 

(4) 

The elements Psl) of the matrur P(-l) define the 
probability that the layer one backward step before 
an r-type layer is an s-type layer, 

n (I-II) 0 

p<-” = 0 n (1 -m (5) 

(1 -rI) 0 n 

The definition of the matrix Ptern) (m > 0) 1s now 
obvious, its elements P&-j satisfy the relatlonshlp 

p(-m’ = p$“’ 
El (6) 

Relatlonshlps (4) are still valid 
The diffracted mtensity from a disordered layer 

structure will be calculated by using the above 
matrices 

The intensity diffracted from a crystal consti- 
tuted by N1, NZ, N3 cells along the crystallographic 
axes (g, Q, ,c respectively) 1s 

N1 -1 N2 -1 N3 -1 N1 -1 Nz -1 N3 -1 

1=X z: z z 2 z 
11 = 0 12 = 0 J3 =o Ji =O J; =o Ji =o 

{F~l~~~sF.$;l; exp [-27rQ -$*,S]) (7) 

where F,l,lle IS the structure factor of the cell whose 
position relative to the orlgm 1s 

$=Jig +J& +J& (8) 

and S 1s the radius vector m the reciprocal space 

,!J=h_a* +k.J* +lY* (9) 

ISI = (2 sin 0)/x (10) 

In a layer structure contammg stackmg faults 
between layers perpendicular to thes axis, for a fixed 
index Jo, the structure factor does not depend on Jo 

and ~~ anymore, so that it is possible to replace 
F by 
pi&d by 

F,, Therefore the expresslon (7) can be stm- 

I= 
sm2N1?rh m2N2nk N;-l N$-l 

sm2nh sm2rrk 
J3=0 J;=o 

iFI3 FT3 ew [-2n16 3 - J ;YI 1 (11) 

The substitution J; = ~~ t m gves 

sm2Nllrh sm2N2nk NJ-l 
I=-----_ - 

sm’nh sm2nk 
i x 

m=-_(Nj -1) J3’-m 

[FIB F,*+m exp(2mml)l + 
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Ns-1 Ns-m-l 

+z c ]Fj,Fl +m wQniml)l 
m;l ,=o I (12) 

Since the structure is disordered, it is profitable to 
introduce the mean value J, of Fj, Fj*+m, so that the 
double sum is reduced to a simple sum: 

sin*Nrnh sin2N2nk N3-1 
I=-_ 

sin*mh sin’nk 
I: 

m=-(F3 -1) 

where 

[(N - lm I)J,expWmOl (13) 

J, = f (F,FfPi’) + FrF:P!‘) + F,F:P\‘S-)) + 

3 (F,F;P$y) t F,F;P@ + F,F:P$?)) + 

; (F,F;P$y) t F,F;P$y) + FaF:P@) 

(14) 
Referring to (1) and (4) gives: 

J, = IF1 I*PiT) t l/3 Pi?) (FrF; + FzF: + FsFT) + 

f P\y)(FrF; •t F3F: + F,F:) 

and : 

J, = I Fr I * {Pi?) t f P\7’[2 exp(2ni@) + 

exp(-4ni$)] + t Pi?’ X 

[2 exp(-2ti@) + exp(4ni@)] ) 

Introducing (16) into (13) gives : 

N3-1 

I= lFrl* 
sin*Nr nh sin*Nznk 

sin*?rh 
2: 

sint k m=_~3-1) 

(No - lml){P{~) exp(2rrirnZ) + f P\?’ X 

(15) 

(16) 

[2exp [2d(d + @I t exp [2ni(mZ - 2@)] ] + 

i P\y) [ 2exp [2ti(mZ - Q)] + 

exp [2ni(mZ + %)I I 1 (17) 

Summing the terms corresponding to the same m 
absolute value (keeping in mind (4) and (6)) gives: 

sin2Nlnk sin2N2nk N3-1 
I= IF,I* - ~ 

sin* ?rk sin’rrk 
Ns+ ‘c (Ns-m) 

Gl 

x [2Pi’;)cos(2nmZ) t 5 Pi? [2 cos(2n (ml + $)) + 

t cos (2A(mZ - 2@))] + $ Pi?) x 

[2cos(27r(mZ - #)) + cos(27r(mZ + 29))] ] 1 
(18) 

Finally, applying the cosine addition formulae and 
separating cosiny and sine terms gives: 

I= IF,I* 
sin*Nrnh sin2N2rrk 

I 

N3-1 

sin’nh sin’lrk 
Ns+ z (Ns-m)X 

m=l 

cos(2?rmZ)[2P~p) + ; (1 - p$;‘)(2 cos(2n9) t 
N3-1 

cos(47@))] + x (N3 - m) sin(27rmZ) X 
m=l 

[t (pi?) - P$?)(2sin(27r) t sin(4n#))] 1 

(19) 

The expression (19) can be written as: 

I= lFrl* 
sin*N,nh sin2N2nk 

sin’lrh sin*nk 
FD (20) 

The disorder function Fn depends on Na, II (through 
the matrices PC”?, h and k (through 4) and I. In 
particular, when II = 1 (hexagonal successions only), 
the expression (20) becomes: 

sin*Nr nh sin2N2nk N3-1 
I= IFrl* .- - 

sin*nh sin*?rk 
Ns+2 x 

m=l 1 
(N3 - mko@nml)l 

whence immediately: 

(21) 

sin*N,nh sin*Nznk sin*NsnZ 
I= l&l* ~ - - 

sin*rrh sin’nk sin*nz (22) 

The same result is obtained when @ = integer, inde- 
pendently of II values. 

The (22) is the expression of the intensity diffract- 
ed from a tridimensionally ordered crystal. 

The function FD (in which II = 0.6, h = 1, k = 0) 
and the interference function, both calculated for 
N3 = 20, are plotted in Fig. 2 as functions of 1. 

The function FD satisfies the requirement of being 
definite positive; its maximum, for non-integer II 
values, corresponds to non-integer Z values. The Fn 
peaks appear broadened in comparison with those of 
the interference function. 

The treatment developed in the present work and 
Allegra’s theory are analogous; however, whereas the 
p parameter refers to the probabilistic event: “the 
translation between the j-th and j t I-th structural 
layer is...“, our parameter II refers to the event: “the 
next jth structural layer following the first is...“. 
One further, more substantial, difference, is that 
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I- 

Fig. 2. Solid line: interference function (N3 = 20); dashed 
line; disorder function (N3 = 20, II = 0.6). The calculations 
are carried out along the 101 reciprocal line. The disorder 
function is drawn with a multiplicative factor of 5 with 
respect to the interference function. 

whereas Allegra’s formula is developed in the “infi- 
nite crystal” approximation, we have taken into 
account the finite size of crystallites. Therefore, our 
treatment is suited for a complete reproduction of 
an experimental pattern. 

Calculation Method 

In order to reproduce the experimental powder 
spectra, the expression (19) must be converted into 
a function of 20 : 

1 
I(28) = - 

4+12 
_I& I do (23) 

extended to the surface x of the sphere with radius 
,S. The integration is carried out numerically; the 
sample of points selected for the calculation of (19) 
must include points from the intervals in which the 
interference functions attain their absolute maxima. 
Achieving this goal by constant steps (little areas of 
constant size on the sphere) would require the sampl- 
ing of a great number of points and, as a 
consequence, exceedingly long computing time. 
Therefore we have adopted in the regions around the 
absolute maxima of the interference functions a 

smaller integration step with respect to the other 
zones. Actually, the predominant contribution to the 
integral is due to the maximum zones. 

In setting up the computer program for surface 
integration (23), it proved rather difficult to follow 
the course of the interference functions on the spheri- 
cal surface; therefore we preferred to convert the 
integral (23) into a double integral and carry out the 
calculations in the hk plane, by the Simpson proce- 
dure: 

Kw = 4& dh dk 
$_I- I@, k, l(h, k) ) I (24) 

A is a constant multiplicative factor for all points of 
a given spectrum whereas the polarization factor is 
a function of 20. Hence, the prospective relationship 
for the fitting of experimental patterns should be: 

1’(28) = %(l + ~0~228) I(2e) (25) 

Applications to TiCla and Results 

The experimental pattern we intended to repro- 
duce is that of 6-TiCls obtained after 24 hr of activa- 
tion, ie. of the basic component of the Ziegler- 
Natta catalyst that is widely employed in the poly- 
merization of olefins, in particular to produce 
isotactic polypropylene. 

The atomic factors have been derived from the 
International Tables for X-Ray Crystallography 
(1974). As regards the fractional coordinates, 
Allegra’s reduced cell (1962) has been employed, but 
for the parameter z of chlorine atoms a value of 
0.2370 has been used. This corresponds to three 
times the value of 0.079, as reported by Klemm 
(1947) for the cell constituted by three structural 
layers and is not very different from Allegra’s 0.250 
figure. 

The radiation wavelength employed in the calcula- 
tions is obviously the same employed in the record- 
ing of the experimental diffraction pattern (A = 
1.54184 A; Klug and Alexander, 1974). The best 
fit with the experimental diffraction pattern of 
6-TiCls has been achieved by superimposing two 
computed spectra: 1) the spectrum of a disordered 
structure, named er , characterized by II = 0.6, in 
which therefore hexagonal successions prevail; 
2) the spectrum of a disordered structure, named e2, 
characterized by II = 0.2, in which therefore cubic 
successions prevail. Following this interpretation of 
the experimental data the values of some parameters 
have been refined subsequently as follows: 

I) the best values for the reduced cell parameters 
are : 

fl : l$l = Ih 1 = 3 545 A; 1~1 = 5.88 A; 



211 

I I ! I I I I I I I I I I I I I I I I II It 

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 

DiFFraction angle 28 

Fig. 3. Comparison between the calculated and the observed patterns for S-TiCIs; = observed pattern; 
= background; ooooo = calculated pattern (Method I); AAuAA = calculated pattern (Method II). 

e2: Igl = IhI = 3.545 A; y = 5.80 A; 

II) as regards the size of the crystallites, Nr, N2 
and N3 were allowed to change, in the initial step, 
independently of one another. However, the best 
results have been obtained for: 

aN, = bN2 s cNa 

In particular the final values for Nr, N2 and Na are: 
Nr = N2 = 20, N3 = 12. These values correspond to 
a size of about 70 a along each crystallographic 
axis, in good agreement with that determined by 
Wilchinsky (1973). 

III) Several tests were carried out to determine 
the best integration steps. For a wide range of crys- 
tallite sizes, good results have been achieved with 16 
steps in the absolute maximum regions of the inter- 
ference function and with 4 steps elsewhere. If we 
assume the final values of Nr , N2, N3 this corres- 
ponds to ah = Ak = l/160 in the absolute maximum 
regions and A/r = Ak = 18/80 in the other regions. 

IV) The best fit with the experimental pattern has 
been obtained by the two calculated spectra in the 
ratio e2/e1 = 0.39 (Guidetti ef al., in preparation). 
In Fig. 3, along with the experimental pattern of 
6-TiCla, we have drawn the best fitting one. Howev- 
er, it should be noted that the calculations have 
been carried out according to the above described 
procedure only in the regions 28 < 48” and 28 > 
53”. The former region includes the angular range 
28” < 28 < 48’, which reflects mostly the disorder 
effects on the diffracted intensity. Actually the 
above described procedure (first method) does not 

allow a reliable calculation in the regions around I 
= 0. In particular, the peak at 28 z 51.5’ is not 
reproduced and that at 28 z 17.2” exhibits a 
markedly reduced intensity with respect to the 
observed one. Therefore, in these regions we had to 
resort to the integration procedure on the surface of 
the sphere (second method) according to (23), 
although this method is less simple and slower to 
execute than Eqn. (24). 

The good agreement for the peak at 20 = 51.5’ 
(Fig. 3) confirms the validity of the proposed 
approach to the study of structures affected by 
stacking faults. 

Conclusions 

The mathematical model described in the present 
work is a powerful tool in investigating the disorder 
in triple-layer structures. The application to the 
study of S-TiCla allowed us to check and develop 
Allegra’s structural hypothesis and to obtain for 
the first time a complete reproduction of the experi- 
mental diffraction pattern. 
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